Update on the Vegetation Response to Environmental Flows and Restoration in the Colorado River Delta

Karen Schlatter
kschlatter@sonoraninstitute.org
Project Manager
Colorado River Delta Program, Sonoran Institute
Historic Delta

Photo source: IBWC
Colorado River Flow at U.S. - Mexico Border 1878-2009

- Hoover Dam Completion
- Colorado River Compact Signed
- Treaty With Mexico Signed
- Glen Canyon Dam Completion
- Treaty obligation
- Pulse flow
Minute 319

- 5-year agreement signed in November 2012 by US and Mexico
- Establishes new guidelines for the management of Colorado River water during times of drought and promotes investments in water conservation projects
- Water dedicated for ecological flows to the Colorado River in Mexico for the 1st time in history
- Total water to be dedicated to Delta: 158,088 acre-feet (af)
- Delta Water Trust to provide 52,700 af for river base flow; 105,400 af provided by US and MX for flood pulse flow
- NGO goal is to restore 2300 acres of habitat by end of 5-year term
- At end of 5-year term, US and MX will determine if/how to expand commitments
Monitoring impacts of Minute 319 environmental flows
The Minute 319 Science Team

Karl Flessa, University of Arizona
Carlos de la Parra, Colegio de la Frontera
Ed Glenn, University of Arizona
Martha Gomez, University of Arizona
Matt Grabau, Sonoran Institute
Osvel Hinojosa, Pronatura Noroeste
Eloise Kendy, The Nature Conservancy
Jeff Kennedy, USGS
Jim Leenhouts, USGS
Jeff Milliken, US Bureau of Reclamation
Erich Mueller, USGS
Pamela Nagler, USGS
Steven Nelson, Unaffiliated
Karen Schlatter, Sonoran Institute
Jack Schmidt, USGS, Utah State University
Pat Shafroth, USGS
Margaret Shanafield, Flinders University
Dale Turner, The Nature Conservancy
Jorge Ramirez, Universidad Autónoma de Baja California
Eliana Rodriguez, Universidad Autónoma de Baja California
Francisco Zamora, Sonoran Institute
Seedling transects

• Located in Reaches 1-5

• 21 transects co-located with piezometers

• The following was measured:
 o Seed dispersal timing and abundance
 o Pre- and post-pulse vegetation
 o Seedling locations and densities
 o Pre- and post-pulse topography
 o Pre- and post-pulse sediment texture and salinity
Vegetation Monitoring in Laguna Grande

Objective: Assess native seedling establishment and growth in Laguna Grande for different restoration treatments:

- Control (no inundation, no nonnative species removal)
- Removal of tamarisk and arrowweed
- Grading and reconnection of meanders to river channel
- Inundation with pulse and base flows
Seedling mortality

Seed available? (Yes) → Seed augmentation

No → Bare, moist surface available? (Yes) → large pulse flow, vegetation removal, land contouring, irrigation

No → Moisture available in rooting zone? (Yes) → base flows, irrigation

No → Protected from future flooding/scour? (Yes) → Managed recession, site selection, flow sequencing

No → Low competition? Low salinity? Low herbivory/grazing? (Yes) → weed control, overbank flooding, exclosures

No → survival, growth (Yes) → SEEDLING ESTABLISHMENT

No → No
Seed Availability

- SAGO = Goodding's willow (Salix gooddingii)
- POFR = Fremont cottonwood (Populus fremontii)
- TASP = Tamarix species
- BASP = Baccharis species

Graphs showing availability of seeds for REACH 1, REACH 2, REACH 3, REACH 4, and REACH 5 from March to June.
Bare Soil Requirement:
Soil Salinity:

By Reach: March and May

In (All) Seedling Establishment Plots (October)
Depth to Groundwater

![Depth to Groundwater Graph](image.png)
Conditions Assessment for Native Riparian Recruitment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Reach 1</th>
<th>Reach 2</th>
<th>Reach 3</th>
<th>Reach 4 (unprepared)</th>
<th>Reach 4 (prepared)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seed Availability</td>
<td>good</td>
<td>fair</td>
<td>poor</td>
<td>good</td>
<td>excellent</td>
</tr>
<tr>
<td>Bare Substrate</td>
<td>fair</td>
<td>good</td>
<td>good</td>
<td>fair</td>
<td>good</td>
</tr>
<tr>
<td>Continued Moisture</td>
<td>good</td>
<td>poor</td>
<td>poor</td>
<td>good</td>
<td>good</td>
</tr>
<tr>
<td>Protected from future flooding</td>
<td>fair</td>
<td>poor</td>
<td>poor</td>
<td>fair</td>
<td>fair</td>
</tr>
<tr>
<td>Low competition</td>
<td>poor</td>
<td>good</td>
<td>good</td>
<td>poor</td>
<td>good</td>
</tr>
<tr>
<td>Low soil salinity</td>
<td>good</td>
<td>good</td>
<td>fair</td>
<td>fair</td>
<td>poor - fair</td>
</tr>
<tr>
<td>Lack of herbivory/grazing</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
<td>good</td>
</tr>
</tbody>
</table>
2014 and 2015 Frequencies

A Frequency of Seedling Presence Oct. 2014

<table>
<thead>
<tr>
<th>Site</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100%</td>
</tr>
<tr>
<td>R2</td>
<td>80%</td>
</tr>
<tr>
<td>R3</td>
<td>60%</td>
</tr>
<tr>
<td>R4</td>
<td>40%</td>
</tr>
<tr>
<td>R5</td>
<td>20%</td>
</tr>
<tr>
<td>LG1</td>
<td>100%</td>
</tr>
<tr>
<td>LG2</td>
<td>80%</td>
</tr>
<tr>
<td>LG3</td>
<td>60%</td>
</tr>
</tbody>
</table>

B Frequency of Seedling Presence Oct. 2015

<table>
<thead>
<tr>
<th>Site</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>100%</td>
</tr>
<tr>
<td>R2</td>
<td>80%</td>
</tr>
<tr>
<td>R3</td>
<td>60%</td>
</tr>
<tr>
<td>R4</td>
<td>40%</td>
</tr>
<tr>
<td>R5</td>
<td>20%</td>
</tr>
<tr>
<td>LG1</td>
<td>100%</td>
</tr>
<tr>
<td>LG2</td>
<td>80%</td>
</tr>
<tr>
<td>LG3</td>
<td>60%</td>
</tr>
</tbody>
</table>

SAGO = Goodding’s willow (*Salix gooddingii*)
POFR = Fremont cottonwood (*Populus fremontii*)
TASP = *Tamarix* species
BASP = *Baccharis* species
2014 and 2015 Densities

SAGO = Goodding's willow (*Salix gooddingii*)
POFR = Fremont cottonwood (*Populus fremontii*)
TASP = *Tamarix* species
BASP = *Baccharis* species
Numbers signify:
1st #: Transect id
2nd #: Aug 2014 C-W count
3rd #: Oct 2014 C-W count

Source: ESRI, DigitalGlobe
AEZ: California, USA
Change in NDVI (greenness) in the inundated area:
Conclusions:

• Most requirements for woody, native riparian species recruitment were met in Reaches 1 and 4 unprepared areas.

• In unprepared sites, establishment was limited by either low water availability or lack of bare soils.

• Seedling establishment requirements were met at the majority of prepared restoration areas in Reach 4 due to management actions.

• Native, woody riparian species established with highest frequencies and densities in Reach 4 prepared areas and Reach 1 unprepared areas.

• More extensive native riparian vegetation recruitment from environmental flows will likely require additional active management.
Thank you!

Email: kschlatter@sonoraninstitute.org

Acknowledgements:
Pat Shafroth, USGS
Martha Gomez, University of Arizona
Matt Grabau & Francisco Zamora, Sonoran Institute