Southwestern Willow Flycatcher status, reproductive success, and habitat use on the Virgin River, Utah

Robert Dobbs
Washington County Field Office
Utah Division of Wildlife Resources
Southwestern Willow Flycatcher
Empidonax traillii extimus

Breeding Habitat
- Lowland riparian forest
 - Early successional
 - Heterogeneous structure
 - Dense vegetation 2-4 m height
- Associated with water
 - Still–slow moving; saturated soil
Southwestern Willow Flycatcher
Empidonax traillii extimus

Breeding Biology

- **Territorial**
 - Territory size 0.2 – 0.5 ha
- **Monogamous... mostly**
- **Nests**
 - Female builds
 - Compact cup of grasses, plant fibers
 - Fork of tree, 2–5 m above ground
Southwestern Willow Flycatcher
Empidonax traillii extimus

Breeding Biology

- **Eggs**
 - Clutch size 2–4 eggs
 - Female incubates, 12–13 d

- **Parental care**
 - Male & female feed nestlings, 12–15 d
 - Fledglings remain in territory 14+ d
UDWR monitoring (2008-2012)

Virgin River at St George, UT
UDWR monitoring (2008-2012)

Virgin River at St George, UT

Population surveys

Nest monitoring

Microhabitat / vegetation
Tamarisk Leaf Beetles (*Diorhabda carinulata*) in St George

• Introduced in 2006

• Tamarisk defoliation:

 • 2008: August, *after* SWFL breeding

 • 2009: June

 peak SWFL breeding

 • 2010: June

 • 2011: late July

 after SWFL breeding

 • 2012: late July
Beetle-induced tamarisk defoliation

- Affects nest site microclimate
 - Higher temp, Lower RH
 - Decrease hatching success

- Affects nest concealment
 - Increase predation
 - Increase brood parasitism
SWFL numbers in St George, 2008-2012

Females shifted distribution, but no change overall

Number of breeding females

<table>
<thead>
<tr>
<th>Site</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside Marsh</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Seegmiller Marsh</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>River Rd Bridge</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Riverside East</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Snipe Pond</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y-Drain Marsh</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Riverside Seegmiller River Rd Bridge Riverside East Snipe Pond Y-Drain Marsh
All Sites
SWFL numbers in St George, 2008-2012

Males shifted distribution, & decreased overall

<table>
<thead>
<tr>
<th>Site</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riverside Marsh</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Seegmiller Marsh</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>River Rd Bridge</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Riverside East</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Snipe Pond</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Y-Drain Marsh</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>All Sites</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>10</td>
<td>14</td>
</tr>
</tbody>
</table>
Habitat use shifted between 2009 & 2010

Tamarisk trees (> 8 cm)

\[\chi^2 = 30.2, \text{ df } = 3, \ P < 0.001 \]

Willow shrubs (≤ 8 cm)

\[\chi^2 = 24.6, \text{ df } = 3, \ P < 0.001 \]

Tamarisk shrubs (≤ 8 cm)

\[\chi^2 = 1.9, \text{ df } = 3, \ P = 0.59 \]
Nest substrate use shifted between 2009 & 2010

<table>
<thead>
<tr>
<th>Year</th>
<th>Willow Substrates</th>
<th>Tamarisk Substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>2010</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2011</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Reproductive success

![Graph showing cause of nest failure over years]

- **Unknown**: 0.7
- **Hatch failure**: 0.6
- **Parasitism**: 0.5
- **Predation**: 0.4

Defoliation first coincides with peak SWFL breeding
Nest success remains low despite habitat shift

SWFL change nest-site habitat preferences

Defoliation first coincides with peak SWFL breeding

Cause of nest failure

- Unknown
- Hatch failure
- Parasitism
- Predation

Mayfield survival probability

Percent of total nests
Nest Predation (2010-2012)

- 41% nests / year
 - Range 26-60%; n = 56

- Predators unknown
 - Mostly avian?

- Nest video (2012)
 - 1 predation event
 - Brown-headed Cowbird
Brood Parasitism (2010-2012)

- 43% nests / year
 - Range 25-59%; n = 56

-Direct effects
 - 19% nest failures
 - Reduced fecundity

-Indirect effects
 - Nest abandonment

-Cowbird control?
 - Pilot study funded (2013)
 - Feasibility
 - Effectiveness
Nest success habitat-mediated (2010-2012)?

Nests more likely to fledge in tamarisk than willow substrates

\[X^2 = 22.4, \text{ df } = 1, P < 0.001 \]

\(\chi^2 = 22.4, \text{ df } = 1, P < 0.001 \)

Nests more likely to fledge with higher tamarisk shrub density

\(P = 0.001 \)
Nest concealment may contribute to nest success if visual (avian) predators important

Coyote willow only

Mixed coyote willow-tamarisk

Tamarisk adds structural complexity to coyote willow-dominated habitat—increases concealment
Habitat restoration and enhancement

- Tamarisk shrubs valuable when mixed with native vegetation

- Reduce tamarisk density by 60-70 %
 - Prioritize tamarisk trees for removal
 - Leaving tamarisk shrubs in understory

- Replant thinned areas with mix of native species that provide understory structure
 - e.g., Goodding’s willow, seep-willow