Developing a Spatial Model of Yellow-billed Cuckoo Breeding Habitat

James R. Hatten1
1U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, Washington

Matthew J. Johnson2, Jennifer A. Holmes2
2U.S. Geological Survey, Southwest Biological Science Center, Colorado Plateau Research Station, Flagstaff, Arizona
Project Objectives

- Characterize Yellow-billed Cuckoo breeding habitat
- Develop spatially explicit models of cuckoo breeding habitat
- Identify all potential cuckoo habitat on the Lower Colorado River
- Extrapolate the model to other parts of the state
- Use the predictive model for habitat restoration and enhancement effectiveness monitoring
Modeling Approach

Conceptual Model

Territory, Satellite & DEM Data

GIS

Model Extrapolation

Territory Locations

NDVI

Terrain ruggedness

Proximity Variables

Logistic Regression

Verification Data

Cuckoo Breeding Habitat Map

Habitat enhancement and restoration effectiveness monitoring

Legend
- data
- process
- decision
Sample Locations - 2006

Lake Mead Delta

Bill Williams

Sample
Absence
Presence

0 40 80 160 Kilometers
Exploratory Variables

- Terrain roughness (30-m DEMs)
- Distance to water
- Distance to agriculture or cities
- Vegetation density (Thematic Mapper)
 - NDVI
 - Tasseled Cap
- Vegetation heterogeneity
- Patch size and configuration
 - Multiple scales
- Hydro-geomorphic classification
 - Different approaches
Distance to Water

Distance to water
- 0 - 1 km
- 1 - 2 km
- 2 - 3 km
- 3 - 4 km
- 4 - 5 km

Lake Mead Delta
Bill Williams

Distance
0 25 50 100 Kilometers
Patch (120-m radius)

Bill Williams

Amount of dense vegetation within 120-m radius

Sample
Absence
Presence

0 1.25 2.5 5 Kilometers

Low
Moderate
High
Significant Variables

- **Terrain ruggedness**
 4 classes: flat, low, moderate, high

- **Patch density**
 Amount of dense vegetation (NDVI > 0.41) within 120-m radius (4.5 ha)

- **Patch heterogenity**
 Variation in vegetation density (SD of NDVI) inside a 480-m radius (72 ha)
Significant Covariates

Vegetation coverage (120-m radius):

60
50
40
30
20
10
0
-10

Vegetation heterogeneity (480-m radius):

7
6
5
4
3
2
1
84
85
147
148
14

SAMPLE
Significant Covariates

[Box plot diagram with two samples labeled 0 and 1, showing the distribution of data.]
Model Outputs

- Probability grids
- Spatially explicit maps
- Multiple classification approaches
Probability Surface - 2006

SAMPLE
- Absence
- Presence

Model probability
- High: 0.999999
- Low: 0.0122897

Bill Williams
Potential Cuckoo Habitat 2007

Legend

Cuckoo Potential 2007
Verde River YBCU Model Results
San Pedro YBCU Model
Conclusions

Terrain ruggedness most important
- moderate terrain ruggedness the best (>20 times as likely to have YBCU as flat terrain)

Patch size and composition important
- 120 m radius (core density)
- 480 m radius (vegetation heterogeneity)
- Each 10% of core area covered in dense vegetation = 15% increase in YBCU
- Each 1SD increase in vegetation heterogeneity = 68% increase in YBCU

Classification accuracy ~75%

Extrapolation produced results on the Verde and San Pedro that were not as specific as on the LCR.
Southwestern Willow Flycatcher Modeling

Predicted SWFL Breeding Habitat: Salt/Roosevelt 1994 – 2005
Temporal Model Accuracy: 1994 - 2004

Predicted habitat (ha)

Territories

R Sq Linear = 0.746