Designing habitat for *Sigmodon arizonae*: A management strategy?

S. A. Neiswenter
Bureau of Reclamation, MSCP
Intro

• *Sigmodon arizonae* distribution

• Historically part of *S. hispidus*

• Ecologically probably very similar
 – Draw some general conclusions from that spp.
Intro

• MSCP HCP
 – 125 acres of marsh (5-56, 5-57 of HCP)
 • Of the 512 acres for Yuma clapper rail
 – “Marsh” (5-27 of HCP)
 • Mosaic of marsh vegetation (tule, cattail, common reed) ranging from 25-100% of the total land cover
 • As well as, trees, grasses, open water, and mudflats
Intro

• From the LCR = old and not quantitative
 – Marsh veg, Weedy, old-field
 • Grinnell 1914, 1933 – *S. hispidus*
 • Bradley 1964
 • Zimmerman 1970
 • Anderson and Nelson 1999
 • Blood 1991

• Other spp...

Intro

• From *S. hispidus*

 • prefer grasslands, old-field habitat (Cameron and Spencer 1981)

 • High herbaceous cover (Stokes 1995)

 • Shun areas where tree canopy shades ground cover (Geortz 1964)

 • early successional clear-cuts (Brown et al. 1999)

 • Prefer sites with tall (>1m) shrubs and high percent cover but no selection for particular vegetation type (Browne et al. 1999)

Intro

• Surveys to date
 – 3 consistent populations
 • 1 *might* be considered marsh...
 – Marsh veg is maybe 25%, no trees, and little grass...dang!

 – Other 2 are dominated by grasses, bushes, and on a broader scale trees.
Intro

• How do we get habitat credit?
 – Presence
 • One’s enough?

 – Habitat based program
 • Must be able to quantify habitat characteristics
Objectives

• Quantify microhabitat characteristics

• Estimate demographic parameters

• Design monitoring strategy

• Get habitat credit
Methods

• Mark-recapture
 – Permanent trapping grids at each site
 – Station every 10 meters
 – Analyzed with program MARK

• Vegetation quantification
 – Each station at 1m measure veg
 – Logistic regression
Big Picture Results

• Survival est. for 3 sites:
 – PVER bench - Higher
 – Nature Trail - Higher
 – Pintail - Lower

• Site and Seasonal differences in vegetation cover
 – Not vertical density

• Is there a connection? maybe...
How do I make *Sigmodon* habitat?

• Parameters of two competing models:
 – VD2
 – VD10
 – Average litter depth

• Other variables in either model:
 – Cover of grass, forb, or litter
 – VD5
How do I get Habitat Credit?

• Presence = not enough?

• 2 “stage” monitoring
 – 1st = directed presence survey ($)
 • Broad scale random sampling unnecessary, costly, and ineffective ($$$-$$$$$)
 – If present: 2nd = monitoring ($-$$$)
 • Est. survival and/or population size
 – Determine what is appropriate (e.g. X survival through Y time)

$ = cheap \quad $$ = moderate \quad $$$ = expensive \quad $$$$ = prohibitively expensive
I made habitat but nobody showed up 😞

• Habitat based
 – Anyone (yes, anyone) can measure veg at a site and estimate the probability:
 \[\Pi_k(X) = 1 - \sum_{i=1}^{k-1} \Pi_i(X) \]

• This eventually becomes a management issue...
 – sweet, is the title going to make sense now?
Management issues

• Weedy species

• Occur in short lived primary succession

• Necessarily require active management

• Seriously, how do I get Habitat Credit?
Management Strategy?

• Habitat Formula
 • Measure veg at a site
 • Plug into formula and estimate probability of capturing *Sigmodon*

• To increase the probability of capturing *Sigmodon*
 • the formula can identify what to change

• It could also be used to track the progression of habitat
 – Inform management decisions on when to make changes
 – Give idea of how long an area will meet requirements
Free at last, Free at last!

• The next 17 slides are pictures...

But you still have to listen to me ramble :D :D :D
Thanks to:

- P. Aurit
- B. Barrow
- D. Laush
- N. Olsker
- A. Stephens
- K. Zander
- Everyone at MSCP
- Refuges + SCA